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Abstract. The framework of infinitely divisible scaling was first developed to analyse the statistical inter-
mittency of turbulence in fluid dynamics. It also reveals a powerful tool to describe and model various
situations including Internet traffic, financial time series, textures ... A series of recent works introduced
the infinitely divisible cascades in 1 dimension, a family of multifractal processes that can be easily synthe-
sized numerically. This work extends the definition of infinitely divisible cascades from 1 dimension to d
dimensions in the scalar case. Thus, a class of models is proposed both for data analysis and for numerical
simulation in dimension d ≥ 1. In this article, we give the definitions and main properties of infinitely
divisible cascades in d dimensions. Then we focus on the modelling of statistical intermittency in turbulent
flows. Several other applications are considered.

PACS. 02.50.Ey Stochastic processes – 05.45.Df Fractals – 47.53.+n Fractals in fluid dynamics –
47.27.E- Turbulence simulation and modelling

1 Introduction

Scale invariance is now considered as a well-known prop-
erty of a wide variety of systems ranging from turbulent
flows [22] to Internet traffic [37], DNA series [2,38] or nat-
ural images [47]. The statistical modelling of turbulent
fluid flows has certainly been one of the most challeng-
ing and stimulating problems. It gave birth to a variety
of tools as far as the understanding of scale invariance
is concerned [22]. A usual evidence for scale invariance
is the observation of a power-law power spectrum. In
turbulence, we think of the famous k−5/3 velocity spec-
trum. Another property of turbulent flows is their depar-
ture from Gaussian distributions. The intermittency phe-
nomenon is often defined from a statistical viewpoint as
the evolution of the probability density functions (pdf) of
increments or wavelet coefficients from nearly Gaussian at
larger scales to far from Gaussian at smaller scales. One
would therefore appreciate to have non Gaussian scale in-
variant stochastic processes at hand. Hopefully, multifrac-
tal processes meet both properties. But there are not so
many well known families of processes.

In one dimension, recent works [4,7,17,18,34,44] have
given very interesting results by defining the class of in-
finitely divisible cascades including the subclass of com-
pound Poisson cascades. The purpose of this paper is the
generalization of these definitions in a d-dimensional space
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(d ≥ 2). For instance, this will provide us with relevant
models for scalar quantities such as the 3-dimensional dis-
sipation field ε(x) in turbulent flows or the 2-dimensional
intensity I(x) of grey levels images.

Note that we will consider scalar multifractal processes
only, not vectorial. From a mathematical point of view,
the quantity of interest can be seen as the density of a
positive measure: the turbulent dissipation field is always
non-negative (ε(x) ≥ 0) and the intensity of an image is
also non negative (I(x) ≥ 0). In the multifractal frame-
work, the term scale invariance then refers to the power
law behaviour of the moments of some scale dependent
quantity1 built on the process X under study. For a posi-
tive scalar process X(x) defined on R

d, one often uses the
box averages over a ball of radius r and volume Vr

εr(x) =
1
Vr

∫
‖x′−x‖<r

X(x′) dx′. (1)

In short, scale invariance is then described by a set of
multifractal exponents τ(q) defined through:

IEεr(x)q ∝ rτ(q), (2)

where IE denotes mathematical expectation. For a given
process X(x), the multifractal formalism is said to be ver-
ified when the multifractal spectrum D(h) is related to

1 For instance increments X(y)−X(x) in function of ‖y−x‖
or wavelet coefficients TX(x, a) at scale a.
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the scaling exponents τ(q) through a Legendre transform:

D(h) = inf
q

[d + qh − τ(q)]. (3)

The multifractal spectrum D(h) quantifies the relative im-
portance of singularities associated to local Hölder reg-
ularity h in X(x) [23,22,5,25,26,41]. One step further,
the property of Extended Self-Similarity (ESS) was intro-
duced in the study of turbulent flows in the early 90s [22].
At first, it was used to increase the precision of scaling
exponent estimate. It relates moments of different orders
through a relative scaling behaviour:

IEεq
r ∝ (IEεp

r)
H(p,q). (4)

Scaling of the form given in (2) clearly implies ESS.
Note that the ESS property does not simply reduce

to a scaling property. It betrays an underlying multiplica-
tive cascade mechanism and describes the evolution of the
probability density functions of a scale dependent quantity
(e.g., velocity increments or locally averaged dissipation in
turbulence), denoted by εr here, from the larger scales to
the finer. Indeed, the ESS can be seen as the signature of
what is called an infinitely divisible cascade scaling. This
was first observed on 1D signals such as hot wire veloc-
ity measurements in turbulence [11,20,35,46] or Internet
traffic flows [42,48]. The framework of infinitely divisible
scaling [10,13] allows for more flexible scaling and thus
better fitting of data and honours the contribution of all
scales in a range of interesting scales rmin ≤ r ≤ rmax as
follows:

IEεq
r = Cq exp[−τ(q)n(r)], rmin ≤ r ≤ rmax, (5)

where n(r) is some monotonous function. In terms of scale
dependence, the infinitely divisible scaling framework gen-
eralizes (2) which is recovered by choosing n(r) = − ln r.
The difference in spirit lies in the fact that multifractal
analysis applies to any process and is concerned with lo-
cal properties in the limit of fine scales, but not finite
scales. Note that both multifractal analysis and infinitely
divisible scaling can be formulated using wavelet coeffi-
cients [5,25,26,48]. Moreover, the infinitely divisible scal-
ing approach is deeply connected to multiplicative cas-
cades and appeared as a good entry to infinitely divisible
cascades.

Beyond statistical analysis, there is also a need for ac-
tual models and tools to synthesize processes with con-
trollable scaling properties. To this respect, multiplicative
cascades appear intimately connected to multifractal pro-
cesses so that they have played a key role in turbulence. A
nice feature of multiplicative cascades is that their synthe-
sis relies on an easy to implement iterative procedure. A
succession of refinements and generalizations of such mul-
tiplicative cascades led to the infinitely divisible cascades
(IDC). IDC are a versatile family of non Gaussian scale
invariant processes which are easy to synthesize numeri-
cally. For 1D signals (time series), IDC have given a way
to the synthesis of a large family of multifractal processes
with prescribed properties [7,34,16–18]. This paper aims

at showing how the construction of infinitely divisible cas-
cades in 1 dimension generalizes to d dimensions, d ≥ 2,
with again many appealing properties: scaling exponents
can be prescribed in (2); the scaling range can be pre-
cisely defined; properties are observed over a continuum
in space and scale, e.g., there is no preferred scale ratio
as in discrete constructions; a wide class of non Gaussian
models is available. In d dimensions, geometrical features
(e.g., anisotropy) can be interestingly taken into account.
Such properties are very useful to build a relevant model
of turbulent data (see Sect. 4) or to model natural images
and textures as explained in a forthcoming paper [12].

The article is organized as follows. In Section 2, we ex-
tend the definitions of (scalar) infinitely divisible cascades
(IDC) from 1 to d (d ≥ 2) dimensions and review their
main properties. In Section 3, we focus on the vast sub-
class of Compound Poisson Cascades (CPC) which turn
to be easy to synthesize numerically and receive inter-
esting physical interpretation. In Section 4, we propose a
phenomenology of the intermittency phenomenon in fully
developed turbulence viewed through the lens of infinitely
divisible cascades to finally review some classical models
of turbulence within this framework.

2 Infinitely divisible cascades in d dimensions

Recently, IDCs [7,34,4,16–18,44] have been introduced in
1 dimension as a “randomized version” of the well known
canonical multiplicative cascades of Mandelbrot [32,49].
Mandelbrot’s canonical cascades, also called binomial cas-
cades, are built on a dyadic tree from the larger to the
smaller scales. Despite many interesting properties, these
cascades have two main drawbacks. Because of the dyadic
structure, binomial cascades display discrete scale invari-
ance only. Moreover, such a construction is not invariant
to translation so that the resulting process is not station-
ary in the strict sense. IDCs provide us with a versatile
tool of stochastic modelling since they achieve continuous
scale invariance as well as true stationarity. Some features
are easier to describe in 1 dimension while they extend to
d dimensions quite naturally as will appear in the sequel.
Therefore, we first briefly recall the definition of an IDC
Q�(t) in 1 dimension [7,34,4,16–18,44]. Then we define
IDCs Q�(x) for x ∈ R

d in higher dimension d ≥ 2.

2.1 Definitions

Let G be an infinitely divisible distribution with moment
generating function G̃(q) that can be written in the form
e−ρ(q).

Let dm(t, r) = g(r)dtdr a positive measure on the
time-scale half-plane P+ := R × R

+.
Let M denote an infinitely divisible, additive in-

dependently scattered random measure distributed
by G, and supported on the time-scale half-plane
P+ and associated to its so-called control measure
dm(t, r). For all disjoints subsets E1 and E2, M(E1)
and M(E2) are independent random variables and
M(E1 ∪ E2) = M(E1) + M(E2). The random measure M
is such that IE[exp [qM(E)]] = exp [−ρ(q)m(E)].
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C�(t) C�(s) ∩ C�(t)
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(a) (b) (c)

Fig. 1. “Time-scale” construction of Infinitely Divisible Cascades. (a) The shaded cone indicates the region that determines
the value of the cascade at time t. (b) The dependence between Q�(t) and Qr(s), in particular their correlation, stems entirely
from the measure of the intersection of two cones Cr(t) and C�(s). (c) Space-scale cone defining Q�(x) at x(x, y). For a compound
Poisson cascade, Q� is the product of those random multipliers Wi(xi, yi, ri) that belong to the cone C�(x).

1D 2D 3D

Fig. 2. Examples of an IDC in 1, 2 and 3 dimensions respectively.

Definition (in 1 dimension)
For given resolution 0 < � ≤ 1, let C�(t) the cone of in-
fluence2 defined for every t ∈ R as C�(t) = {(t′, r′) : � ≤
r′ ≤ 1, t − r′/2 ≤ t′ ≤ t + r′/2} (see Fig. 1a). An In-
finitely Divisible Cascading noise (IDC noise) is a family
of processes Q�(t) parametrized by � of the form

Q�(t) =
exp [M(C�(t))]

IE[exp M(C�(t))]
. (6)

Possible choices for distribution G are the Normal distri-
bution, Poisson distribution, compound Poisson distribu-
tions, Gamma laws, Stable laws ... so that a large variety
of choices is available for modelling and applications.

A nice property of IDC noises lies in the geometrical
interpretation of their correlations that are controlled by
the intersections of cones C�(t) ∩ C�(s) in the time-scale
plane P+ — see Figure 1b. This is due to the properties
of independence and additivity of the random measure M .
This degree of freedom has been explored in [17,18] to get

2 Note that the large scale in the definition of C�(t) has
been arbitrarily set to 1 without loss of generality. Choosing a
different large scale L would simply reduce to a change of units
t → t · L, � → r · L.

warped infinitely divisible cascades which display a con-
trolled departure from power law scaling behaviours.

The d-dimensional version is a natural generalization
of the one-dimensional definition by simply extending the
ingredients from 1 to d dimensions. The interest of this
generalization will appear manifold: many more degrees
of freedom are available in dimension d ≥ 2 compared
to dimension 1 and the range of potential applications is
obviously much wider.

G is still an infinitely divisible distribution with
moment generating function G̃(q) = e−ρ(q). The random
measure M denotes an infinitely divisible, independently
scattered additive random measure distributed by G, sup-
ported on the space-scale half-plane P+ := R

d × R
+ and

associated to its control measure dm(x, r) = g(r)dxdr.

Definition 1 (in d dimensions)
A cone of influence C�(x) is defined for every x ∈ R

d as
C�(x) = {(x′, r′) : � ≤ r′ ≤ 1, ‖x′ − x‖ < r′/2} — see
Figure 1c. With a given infinitely divisible randomly scat-
tered measure M , an Infinitely Divisible Cascading noise
(IDC noise) is a family of processes Q�(x) parametrized
by � ∈ (0, 1) of the form (see Fig. 2 for examples in 1D,
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Fig. 3. (a) Smoothing effect of the kernel: comparison between the spectra of two different Q� obtained in 1 dimension from
two different shapers, f1(x) = I1{|x|<1/2} and f2(x) = cos2(|x|) · I1{|x|<1/2}. (b) Realizations obtained using the same random
variables {Wi, xi, yi, ri}. The use of a regular kernel f implies a smoother (small scales) behaviour of Q�. (c) and (d) Examples
of IDC generated from some specific kernels: the geometry of the kernel influences the local structure of the field (here 2D
textures).

2D and 3D):

Q�(x) =
exp M(C�(x))

IE[exp M(C�(x))]
. (7)

where x = (x1, ..., xd) ∈ R
d.

The previous definition may be extended to an even
more general framework by introducing some localized in-
tegration kernel3 f(x) in (7):
Definition 2 (with integration kernel).

Q�(x) =
exp

∫
�≤r′≤1 f(x−x′

r′ ) dM(x′, r′)

IE
[
exp

∫
�≤r′≤1 f(x−x′

r′ ) dM(x′, r′)
] . (8)

This definition may be useful for various purposes. It re-
duces to definition 1 when f is simply the indicating func-
tion I1D of the disk of radius 1/2 D = {x : ‖x‖ < 1/2}. In
the following, we refer to this default kernel as the cylindri-
cal kernel. This kernel displays sharp edges that generate
sharp variations at small scales in Q�(x). One may obtain
a field Q� that is smoother at small scales by choosing

3 This may be related to the random wavelet expansions
proposed in [33].

a smoother function f that will act as a regularization
kernel. Indeed, choosing a smooth function f attenuates
the small scales discontinuities — see Figures 3a and 3b.
Furthermore, the choice of f permits to take into account
some geometrical features (e.g., anisotropy) of a multifrac-
tal scalar field to be modelled — see Figure 3c where a
non circular five branch star cone has been used. This de-
gree of freedom may be very useful as far as applications
such as the modelling of anisotropic flows or texture syn-
thesis are concerned. For instance, to an even more gen-
eral extent, one may consider the use of a kernel evolving
from anisotropic at large scales to isotropic at small scales
to take into account the decay of anisotropy in turbulent
flows at fine scales. Theoretical difficulty will then rise
from the lack of control on the properties of the resulting
process. There remain several interesting open questions.

Aiming at smooth variations, one may use as regu-
lar as desired functions f(x) with compact support (e.g.,
the disk D = {x : ‖x‖ < 1/2}) and a maximum equal
to one. Thus, f(x) shall look as a unit height pulse
with smooth edges, like a squared-cosine bell for instance,
f(x) = cos2(πx) for ||x|| ≤ 1/2. The function f may even
not have a compact support. It should then have suffi-
ciently fast decreasing tails, like a Gaussian bell of unit
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width for instance. Finally, one may even choose some os-
cillating function, e.g., for aesthetic purpose — see Fig-
ure 3d. Some sophisticated mathematical work is still left
to consider all possible choices of function f(x).

2.2 Basic properties

2.2.1 Immediate consequences of the definition

Q� is a stationary positive random process with:

IEQ� = 1. (9)

Stationarity is ensured by the specific choice of a transla-
tion invariant control measure dm(x, r) = g(r)dxdr and a
translation invariant cone C�(x).

The distribution of Q�(x) is log-infinitely divisible [21].
This is simply because log Q� is an infinitely divisible
random variable with distribution G associated to the
stochastic measure M . Lots of distributions can be used
since many of the distributions having a known explicit
density (Gaussian, Poisson, Gamma...) are infinitely divis-
ible [21]. Thus, we get a versatile family of non Gaussian
scale invariant models to describe scalar fields in d dimen-
sions with non trivial correlations. Section 4 will show how
these processes may serve to model turbulent flows.

2.2.2 The non degeneracy criterion

At this point, we should mention that from a purely math-
ematical viewpoint, the right object to look at is not Q�

itself. Indeed, without entering into too much details, for
given resolution �, Q� is the density of a measure A� such
that for any compact set E ⊂ R

d,

A�(E) =
∫
E

Q�(x′) dx′. (10)

Taking the limit � → 0, one gets the limiting measure A
such that:

A(E) = lim
�→0

[∫
E

Q�(x′) dx′
]

. (11)

Thus some non degeneracy criterion has to be verified by
the chosen distribution G [27,7] so that A be well defined,
i.e. ρ′(1) − ρ(1) > −d, otherwise A degenerates to zero.

The limit � → 0 is not reached in numerical simulations
but this non degeneracy criterion must be taken care of. If
not, the simulated Q� may display a very special behaviour
with very high isolated peaks among an ocean of nearly
zero values. In certain cases, this may happen even when
� is not very small (e.g., � ∼ 0.01). We emphasize that
this non degeneracy criterion which could appear at first
sight as an abstract mathematical property is of crucial
practical importance.

2.2.3 Scaling properties

First, we focus on the more simple definition (7) (with
cylindrical kernel). In this case, the measure M , the dis-
tribution G, the control measure m and the geometry of
the cone of influence C�(x) control the scaling structure as
well as marginal distributions of the cascade. One major
property of IDCs is:

IE[Qq
� ] = exp [−ϕ(q)m(C�)] (12)

where
ϕ(q) = ρ(q) − qρ(1), ϕ(1) = 0, (13)

for all q for which ρ(q) = − log G̃(q) is defined. Note the
similarity between (12) and (5).

Turning to local averages εr over a volume Vr, the
mathematician would look at the moments of the lim-
iting measure A defined in previous section. As already
mentioned, numerical simulations only give access to the
measure A� with finite resolution. In this spirit we prefer
to describe the scaling properties of the practical quantity

εr(x) =
1
Vr

∫
‖x′−x‖<r

Q�(x′) dx′ =
1
Vr

A�(Vr), (14)

even though they are deduced from those of the “more
mathematical” quantity A(Vr).

The scaling properties of IDCs in 1 dimension have
been studied in [4,6,7,17,18,34,44]. They can be extended
naturally to IDC in d dimensions:

IEεr(x)q ∝ exp [−τ(q)m(Cr)] (15)

where in general τ(q) = ϕ(q) at least within some limited
range of values of q.

Power law scaling behaviours are intimately connected
to the particular choice of the control measure [4,17,18,34]
(see Appendix A):

dm(x, r) =
dr

V1/2rd+1
dx, 0 < r ≤ 1, (16)

where V1/2 is the volume of the sphere of radius 1/2 in
d dimensions (e.g., π/4 in 2D). Then m(Cr) = − log r so
that4:

IEεr(x)q ∼ rτ(q) for r � 1. (17)

See Figure 4b for an example of numerical results on
cascades in 2D. In practice, estimates of τ(q) identify to
ϕ(q) within a finite range of values of q ∈ (q∗−, q∗+) only.
The precise values of the lower and upper bounds q∗− and
q∗+ are determined by solving ϕ(q) − qϕ′(q) = N (see [31]
and references therein). As a consequence, a data analysis
cannot identify the function ϕ(q) for any order q but only
in the finite range q ∈ (q∗−, q∗+) ∪ [0, 1].

Another usual evidence for a power law scaling be-
haviour is the observation of a power law spectrum pro-
portional to 1/kα. Infinitely divisible cascades display a

4 In 1 dimension, the choice dm(t, r) =(
I1(0,1]

r2 + δ(1 − r)
)

dr dt yields exact power laws [17,34].
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(a) (b)

Fig. 4. (a) Box averages of a 2D IDC obey scaling laws of the form given by (17). (b) Power law spectrum of Q�(x) in 2
dimensions as a function of k = ‖k‖ over 2 decades: the observed slope is prescribed by the choice of τ (2) = ϕ(2) here.
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Fig. 5. Estimate of correlation functions on 2D cascades. (a) IE[Q�(0)Q�(x)] ∝ |x|τ(2) over nearly 2 decades: the observed
slope exponent is prescribed by the choice of τ (2) = ϕ(2) here. (b) IE[log Q�(0) log Q�(x)] ∝ log |x| betrays a multiplicative
correlation structure. The slope is prescribed by ϕ′′(0) sometimes called the intermittency coefficient.

power law spectrum of the form 1/kd+τ(2) (τ(2) < 0) as
illustrated in Figure 4a in a 2D case (averaging over all
directions).

The scaling properties of the most general IDCs as
defined by (8) take the same form except that ϕ(q) is
replaced by (if the integral converges, see Proposition 2.6
in [39]):

τ(q) =
∫

ϕ(qf(x))dx. (18)

Therefore, the control of the scaling behaviour is much
more difficult since τ(q) combines information both
from ϕ(q) and from the kernel function f(x) in a non lin-
ear way. One may control and prescribe the value of τ(q),
in numerical simulation at least, by using successive ap-
proximations. For sake of clarity, scaling exponents will
always be denoted by τ(q) (or ζ(q) for velocity increments
in turbulence) in the sequel.

Turning to autocorrelation functions, one ex-
pects [4,18,34] at scales smaller than 1 (1 is the largest
scale where the cascade begins):

IE[Q�(0)Q�(x)] ∝ |x|τ(2) for |x| � 1 (19)

which can be checked numerically, see Figure 5a. As a con-
sequence of the multiplicative construction, one expects as
well that (see Appendix B):

cov(log Q�(0), log Q�(x)) ∝ ϕ′′(0) log |x| for |x| � 1.
(20)

Indeed, the amount of information common to log Q�(0)
and log Q�(x) can be intuitively and quantitatively related
to the number of ancestors common to Q�(0) and Q�(x)
which is by construction proportional to log |x|. This be-
haviour is illustrated in Figure 5b. Note that this logarith-
mic behaviour is also consistent with the observation of a
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power-law spectrum for the process log Q�(x). As a conse-
quence, the scale invariance property (at least considered
as the presence of a power law spectrum) can be observed
both on Q� and log Q�. This remark may reveal of partic-
ular interest when dealing with the statistical modelling
of natural images, see, e.g., [12,47]. Indeed, authors are
sometimes confusing about whereas they observe scale in-
variance on the intensity I(x) of the image or its logarithm
log I(x). With little paradox, both quantities may display
a power law spectrum [12].

3 A special family: compound Poisson
cascades

We have now the most general definitions and properties
of IDC at our disposal. In practice, not all IDC can be eas-
ily synthesized. Compound Poisson Cascades (CPC) are
a very interesting subclass of IDCs that are very easy to
synthesize numerically even in d dimensions. This section
aims at gathering all useful definitions and properties of
CPC as well as the description of an algorithm for numer-
ical synthesis in d dimensions.

3.1 Definitions

They were first introduced in 1 dimension in the sem-
inal work by Barral & Mandelbrot [7] as Multifractal
Products of Cylindrical Pulses (in one dimension only).
It appears that they relate to classical models proposed
to describe the statistics of both turbulent flows [20,45,46]
— see Section 4 — and natural images [12,19,24,33]. In-
deed, compound Poisson cascades reveal as the most use-
ful family of IDCs for applications. The key idea was
to replace the dyadic tree structure {(tj,k, rj,k) = ((k −
1/2)2−j, 2−j), j ∈ N, k ∈ Z} of binomial cascades by
a well chosen random Poisson point process (ti, ri) in the
time-scale plane, see Figure 1c. Aiming at power law scal-
ing in 1 dimension, “well chosen” means that it has density
dm(t, r) = dtdr/r2 — see (16). Thus, the density of points
increases as r → 0 exactly as it increases in a dyadic grid.
Note that this density is time-shift invariant. Therefore,
MPCP are stationary. Moreover, scaling laws are observed
over a continuous range of scales since no privileged scale
ratio has been introduced. Random i.i.d. positive multipli-
ers Wi are associated to vertices (ti, ri). Then a compound
Poisson cascade is defined in 1D by:

Q�(t) =

∏
(ti,ri)∈C�(t)

Wi

IE
[∏

(ti,ri)∈C�(t)
Wi

] · (21)

Again, this definition naturally extends to d dimensions
by replacing ti ∈ R by xi ∈ R

d, the 2D cone C�(t) by
a (d + 1)-dimensional cone C�(x). Power law scaling be-
haviours are recovered by choosing dm(x, r) = dxdr/rd+1

(see Sect. 2.2.3 and Appendix A):

Q�(x) =

∏
(xi,ri)∈C�(x) Wi

IE
[∏

(xi,ri)∈C�(x) Wi

] · (22)

Taking the logarithm one gets:

log Q�(x) =
∑

(xi,ri)∈C�(x)

log Wi + K, (23)

where K is a normalisation constant. Equation (23) can
be seen as the random measure M(C�(x)) of the cone
C�(x). Definition (22) appears as a particular form of (7)
where the random measure M is built as a sum of Dirac
pulses of random weights log Wi located at random posi-
tions (xi, ri). This remark makes clear that MPCP may be
called Compound Poisson Cascades since the distribution
of log Q�(t) is a compound Poisson distribution. It appears
that the Poisson distribution of the point process (xi, ri)
is compound with the distribution F of ωi = log Wi.

One step further, let us note that (23) can be written
in the equivalent form:

log Q�(x) =
∑

i

log Wi ·I1D(xi,ri)(x)+K, (K = constant),

(24)
where I1D(xi,ri) is the indicating function of the disk of
centre xi and diameter ri. This suggests to replace I1D(xi,ri)

by some function f((x − xi)/ri) which yields the general
form:

log Q�(x) =
∑

i

log Wi · f
(

x − xi

ri

)
+ K. (25)

One may see f(x) as the geometrical descriptor of some
generic ingredient in the cascade. For instance, it may be
related to the geometry of dissipative structures in turbu-
lent flows (see Sect. 4) or of objects in images (see [12,24]).
Taking the exponential of (25), we are back to the equiv-
alent formulation of (8) for compound Poisson cascades:

Q�(x) =
∏

i W
f

(
x−xi

ri

)
i

IE

[∏
i W

f
(

x−xi
ri

)
i

] · (26)

Another possible extension of (22) was proposed and stud-
ied in [6] (in one dimension only) of the form:

Q̃�(x) =

∏
(xi,ri)∈C�(x) P̃i(x)

IE
[∏

(xi,ri)∈C�(x) P̃i(x)
] (27)

where P̃i(x) = WiW̃ (x−xi

ri
)1D(xi,ri) + 1�D(xi,ri); D(xi, ri)

denotes the disk of Rd of centre xi and radius ri, and W̃ (x)
is some non-negative function in L1(D(0, 1/2)) such that∫
D(0,1/2)

W̃ = 1. While such an approach may appear nat-
ural as far as compound Poisson cascades are concerned,
it is difficult to generalize to infinitely divisible cascades in
general. This is the reason why we rather chose to use (8)
and (26) in place of (27).

3.2 Interpretation and properties

We will mainly focus on compound Poisson cascades not
only because their synthesis is simple to implement in
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d dimensions (see Sect. 3.4) but also because they have
an intuitive interpretation. Notably, they have been of-
ten evoked in the context of turbulence [9,13,20,43,46]
— see Section 4.4.3. This is mainly due to the usual easy
interpretation of compound Poisson distributions that we
briefly recall below.

Let ∆n ∈ R
+ and let F be the probability density

function of some random variable ω. The probability den-
sity function of a compound Poisson distribution is defined
by

G∆n = e−∆n
∞∑

k=1

∆nk

k!
F ∗k (28)

where F ∗k is the kth convolution of F . A classical inter-
pretation of this definition rises by considering the follow-
ing process. Let N(∆n) be a Poisson random variable of
expectation ∆n and distributed by

P∆n{N(∆n) = k} = e−∆n ∆nk

k!
. (29)

For each value of k, let ω1, ω2, . . . , ωk be k independent
random variables distributed by F , independent of k.
Then (28) describes the probability density function of
the random sum xN = ω1 + ω2 + . . . + ωN(∆n).

Now let XN = exN and W = eω. Then

XN = W1 . . . WN(∆n).

It is easy to prove that IEXq
N = IEeqxN = exp[−ρ(q) ·∆n]

with ρ(q) = 1 − IEW q. Let G the distribution defined by
G̃(q) = e−ρ(q). Then (28) reads:

G∆n = G∗∆n. (30)

and one gets in (13):

ϕ(q) = 1 − IE[W q] − q(1 − IEW ). (31)

3.3 An example in turbulence

Let F denote the probability density function of W with
F (ω) = WF (W ). As a particular case of interest we con-
sider the choice

F (ω) = λeλω, ω ∈ (−∞, 0] ⇔ F (W ) = λWλ−1,

λ > 0, W ∈ [0, 1]. (32)

The case λ = 1 corresponds to uniformly distributed vari-
ables W in [0, 1]. This choice (32) was proposed by Am-
barzumian [1] in his work on the Milky Way (see Sect. 4.3)
but also implicitly appears in works by Castaing [9] and
Yakhot [50] in turbulence. A very similar distribution was
obtained independently by Grenander & Srivastava [24]
as well to describe the statistics of natural images (see
also [12]). The kth convolution F ∗k of F is then given by:

F ∗k(ω) = γk,λ(|ω|) =
λk

(k − 1)!
|ω|k−1 e−λ|ω|,

−∞ < ω ≤ 0. (33)

Reporting (33) in (28) we get a distribution G∆n(ω) with
an atom e−∆n at the origin (ω = 0 ⇔ W = 1) and de-
scribed for ω < 0 by:

G∆n(ω) = e−∆n
∞∑

k=1

(λ∆n)k | ω |k−1

k!(k − 1)!
e−λ|ω|

⇐⇒

G∆n(ω) = e−∆n
√

λ∆n
e−λ|ω|√|ω| I1(2

√
λ∆n|ω|),

with ω ∈] −∞, 0[,

(34)

where I1 is the modified Bessel function of order 1 [21].
G∆n in (34) is infinitely divisible since it is a compound
Poisson distribution. In the work by Castaing [9], the pa-
rameter T = 1/λ is called “temperature of a turbulent
flow”. Thus, compound Poisson distributions generate a
very interesting family of IDCs to model turbulent flows
(see Sect. 4) as well as natural images (see [24,12]). We
emphasize that scalar CPC models such as the example
presented above can be easily synthesized numerically as
explained in the next section. The synthesis of vectorial
(not only scalar) fields with similar properties is the sub-
ject of ongoing research.

3.4 Algorithm for synthesis

Algorithms for synthesis in 1 dimension have been de-
scribed in great detail in [34,17] so that we simply mention
below the general ideas and main difficulty when general-
izing to the synthesis of an IDC in d dimensions for d ≥ 2.

In the most general case, the synthesis of an IDC in d
dimensions is a difficult question since it rises the problem
of the simulation of an infinitely divisible random measure
dM(x, r) in a space of dimension d+1 ≥ 3... Even though
it is not impossible, at least in principle, it calls for the
description of complicated domains (intersections of cones
in a (d+1)-dimensional space...).

Hopefully, the simulation of a CPC is easier since it
only relies on the use of a marked Poisson point process.
Thus the algorithm for synthesis works by construction
with discrete sets of variables only. Moreover, the use of a
shaper as in (8) is easy and makes this family of processes
very versatile for data modelling or texture synthesis in d
dimensions.

Let the trapezoid volume Θ = {(x′, r′) : ∀1 ≤ i ≤
d, � ≤ r′ ≤ 1,−r′/2 ≤ x′

i ≤ Xmax
i + r′/2}. The main

steps of the synthesis are for given resolution � and size
limitations Xmax

1 , ..., Xmax
d :

1. determine the number Np of points (and multipliers)
that will be used to compute Q�(x) in the cubic domain
[0, Xmax

1 ] × ... × [0, Xmax
d ]: it is a Poisson random

variable with parameter m(Θ);
2. select Np random points (xi, ri) located in the trape-

zoid Θ, according to density dm(x, r)5;
5 The non-uniform distribution rdg(r) of the ri is achieved

by a change of variable from a uniformly distributed random
variable.
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3. select Np i.i.d. random multipliers Wi such that log Wi

are distributed by F ;
4. for each position x ∈ {xk = (k1∆x, ..., kd∆x) 0 ≤ ki ≤

Xmax
i /∆x}, set

Q�(x) = exp[(1 − IEW )m(C�(x))] ·
∏

(xi,ri)∈C�(x)

Wi.

A key feature of this algorithm is that it is rather
easy to implement. A set of software are available from
the author’s web page at www.isima.fr/ pchainai/
PUB/software.html to synthesize 1D, 2D and 3D fields in
MATLAB (compiled C programs are available as well). A
special software has been developed to visualize 3D den-
sities.

We emphasize that one may as well consider Q�(x)
in d dimensions as a dynamical field in d-1 dimensions
by considering x = (x1, ..., xd−1, t). A “multifractal film”
built following this principle can be downloaded from the
author’s web site. Thus, one can even consider the syn-
thesis of a dynamical “turbulent” 3D scalar field from a
compound Poisson cascade in 4 dimensions (3D + t). The
differences between space variations and time variations
can be taken into account using an anisotropic cascade.
This might be interesting to model turbulent scalar fields
(e.g., water or ice density in clouds) and is the subject of
ongoing research.

4 IDC and the intermittency phenomenon
in turbulence

The statistical modelling of turbulent flows rises a host of
questions. Indeed, more than half a century has been de-
voted to the quest for a clear understanding of the statis-
tics of fully developed turbulence. Despite some progress,
there is still no fully deductive theoretical model includ-
ing the so-called intermittency phenomenon in a 3D tur-
bulent flow. We propose to model the cascade of energy in
fully developed turbulence in the framework of compound
Poisson cascades since such cascades receive a very ap-
pealing interpretation. Thanks to an analogy between the
propagation of energy through the scales and the propa-
gation of a ray of light through absorbing clouds, a versa-
tile phenomenology of the cascade of energy is proposed.
This phenomenology takes into account the intermittency
phenomenon related to the non linear behaviour of scaling
exponents τ(q). Moreover, previous works already focused
on compound Poisson cascades [20,46] but were limited
to a formal data analysis, while here we also provide a
method for numerical synthesis of the model in 3 dimen-
sions (even dynamical aspects may be injected as well by
working in a 3D+t space).

4.1 Intermittency in turbulence

Intermittency in fully developed turbulence is com-
monly characterized by departures from the results of

Kolmogorov 1941 theory [29]. The fundamental ideas un-
derlying this theory are rooted in the phenomenology of
the Richardson’s cascade [40]. Richardson’s cascade basi-
cally relies on the accommodation of two major ingredi-
ents: scale invariance and (dissipative) coherent structures
in the flow. These two points are related to a physical
qualitative interpretation of the behaviour of the non lin-
ear (quadratic) term of the Navier-Stokes equation that
governs fluid flows: the energy is injected in the flow at
the top of a hierarchy of eddies of decreasing size and is
‘cascading’ down to smaller and smaller eddies (because
of the non linear term) to eventually dissipate entirely
at the bottom of the hierarchy. In this view, no scale
plays any specific role between the integral injection scale
and the Kolmogorov dissipative scale: the main ingredi-
ent of Kolmogorov 1941 theory is self-similarity. In his
1941 paper [29], Kolmogorov predicted a self-similar scal-
ing behaviour of the velocity structure functions of the
form IE|δvr|q ∼ rq/3, where δvr = v(x + r) − v(x) is a
longitudinal velocity difference over distance r. Two fun-
damental assumptions of this theory are (i) a constant
and homogeneous rate of dissipation ε(x) = εo; (ii) dis-
sipation takes place at the dissipation scale only. Under
such assumptions, the fractional Brownian motion with
Hurst exponent H = 1/3 appears as a good model to de-
scribe the velocity field in turbulent flows (except for the
non zero skewness of turbulent velocity fields). In sum-
mary, Kolmogorov 1941 theory can be presented as implic-
itly connected to the Gaussian self-similar stochastic pro-
cess Kolmogorov had himself previously introduced from
a mathematical point of view in [28]. The construction of
a stochastic process with suitable scaling properties and
a non zero skewness to model turbulent velocity fields is
still an open question, even in 1 dimension.

In 1944, Landau objected that dissipation fluctuates
so that self-similarity cannot be relevant [22]. Indeed, a
large amount of experimental results later showed that
the velocity increments rather behave as

IE|δvr|q ∼ rζ(q) (35)

with ζ(q) �= q/3, which is usually referred to as the in-
termittency phenomenon or anomalous scaling property.
In summary, the intermittency phenomenon is related to
two connected empirical observations: the scaling expo-
nents ζ(q) of the velocity increments structure functions
in (35) do not behave linearly with q and the probabil-
ity density functions of the velocity increments possess
non Gaussian statistics, see Figure 6 using data from
Baudet [8].

The refined similarity hypothesis proposed by
Kolmogorov in 1962 [30] relates the non linear behaviour
of exponents ζ(q) to the fluctuations of the locally
averaged dissipation εr(x) which Kolmogorov assumed
to be log-Normal. In this second approach, Kolmogorov
postulates that IEεq

r ∼ rτ(q) where τ(q) is a non lin-
ear function of q. The Karman-Howarth equation, a
classical result deduced from Navier-Stokes equation,
then suggests to postulate that IE|δvr|q ∼ rq/3+τ(q).
This approach interestingly takes into account the non
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(a) (b)

Fig. 6. (a) Scaling exponents ζ(q) of the velocity increments of a turbulent flow. (b) Evolution of the probability density
functions of the increments from quasi Gaussian at large scales to non Gaussian at smaller scales.

Gaussian statistics of turbulent flows. Furthermore, it
inspired the multifractal view of turbulence where data
are seen as a collection of singularities and each singular-
ity is more or less a signature of those cascading eddies.
Historically, the reference processes for that situation are
the multiplicative cascades which were introduced in the
work by Yaglom [49], Novikov & Stewart [36,35] and
Mandelbrot [32]. The purpose of the statistical modelling
of turbulent flows has been and still is to accommodate
scale invariance, statistical intermittency and coherent
structures altogether within a consistent model. Without
pretending to explain the intermittency phenomenon,
we aim at proposing an original phenomenology of
the cascade of energy in turbulence that generalizes
Richardson’s vision to a description that accounts for all
of these three ingredients.

4.2 From infinitely divisible scaling to multiplicative
cascades

In the 1990s, Castaing et al. [11,10] proposed the general
framework of log infinitely divisible scaling. This approach
makes explicit the fact that, beyond scaling laws, inter-
mittency results in an evolution of the probability density
functions of the velocity increments δvr from Gaussian to
non Gaussian shapes from large injection scales to small
dissipative scales. Briefly, one remarks that

IE|δvr|q = IEeq ln |δvr | = IEeqYr (36)

is simply the moment generating function G̃(q) of the vari-
able Yr = ln |δvr|. Thus, one may rewrite the scaling prop-
erty (35) as a relative scaling:

IE|δvr2 |q ∼
(

r2

r1

)ζ(q)

IE|δvr1 |q. (37)

Such a relative scaling behaviour enters the more general
framework of the infinitely divisible scaling property:

IE|δvr2 |q ∼ exp[−ζ(q)∆n(r1, r2)]IE[|δvr1 |q] (38)

which is equivalent to the experimental observation of the
so-called Extended Self Similarity (ESS) [3] — see (4).
Using (36), this is equivalent to an equation that accounts
for the evolution of the probability density functions of
Yr = ln |δvr| from a large scale r1 to a smaller one r2

through the convolution operation:

Pr2(ln |δvr|) = G∗∆n(r1,r2) ∗ Pr1(ln |δvr|), (39)

where G is an infinitely divisible distribution with mo-
ment generating function G̃(q) ∝ e−ζ(q) [21]. Thus, a log
infinitely divisible cascade is defined by its so-called prop-
agator

Gr1,r2 = G∗∆n(r1,r2). (40)

Power law scale invariance is recovered by setting n(r) =
− ln r so that ∆n(r1, r2) = n(r2) − n(r1) = ln(r1/r2) as
in (37). The infinitely divisible distribution G is called
the kernel and ∆n(r1, r2) is the depth of the cascade, i.e.
the number of steps of the cascade from r1 to r2. Kol-
mogorov’s 1941 and 1962 theories can be viewed as spe-
cial cases where G is respectively a Dirac and a Normal
distribution.

The fundamental ingredient of infinitely divisible scal-
ing is the separation of variables q and r in the product
ζ(q) · ∆n(r1, r2). Reading G as the distribution of a ran-
dom variable ω̃ = ln W̃ independent of Y = ln |δvr|, we
get:

Pr2(Y ) = Gr1,r2 ∗ Pr1(Y )

⇒ Y (r2)
d= ω̃r1,r2 + Y (r1)

⇒ ln |δvr2 | d= ln W̃r1,r2 + ln |δvr1 |

⇒ |δvr2 | d= W̃r1,r2 · |δvr1 |

(41)

where d= stands for equality of distributions. This equality
betrays an underlying multiplicative structure of the pro-
cess v. The evolution of the distributions of Y through the
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scales takes place “as if” there really was a multiplicative
cascade:

“ |δvr2 | d= W̃∆n(r1,r2) . |δvr1 | ”. (42)

Note that the variable W̃ has no concrete meaning in this
formulation. When (41) is obeyed by distributions Pr(Yr)
there is no evidence that we can define some real pro-
cess (“real” here means “having a physical existence” or
“that can be simulated”) Wr1,r2(x1,x2) that associates
Yr1(x1) and Yr2(x2) and such that Gr1,r2 be the distribu-
tion of lnWr1,r2 . We emphasize that this is a descriptive
approach only. Moreover, Kolmogorov’s refined similarity
hypothesis [30] is necessary to link the properties of the
velocity increments δvr (associated to a vectorial field) to
those of the locally averaged dissipation εr (associated to
a scalar field).

However, such an approach to data analysis in turbu-
lence played a crucial role in the elaboration of IDC. It
actually makes an explicit connection between non-linear
scaling exponents, departures from Gaussianity (statis-
tical intermittency), infinitely divisible distributions and
multiplicative cascades altogether. The understanding of
infinitely divisible cascades introduced in [4,14,16,15,34,
44] as a model for process synthesis was directly inspired
from this approach. Note that infinitely divisible scaling
was used and developed while there was no model for syn-
thesis at hand. It is remarkable that infinitely divisible
cascades came later as the natural answer to an “old”
question. By construction, IDC obey properties similar
to (42) — e.g., see equation (40) in [34].

4.3 Ambarzumian’s model: an analogy
with the turbulent cascade

Let us consider a problem that has a priori no connec-
tion to turbulence and focus on a model proposed by Am-
barzumian [1] in 1944 in a paper entitled On the theory
of brightness fluctuations in the Milky Way. Eventually,
we develop an analogy between the propagation of a ray
of light through a distribution of absorbing clouds and
the cascade of energy through the scales in turbulence.
This analogy aims at clarifying the physical meaning of
the various ingredients of the definition of IDC.

4.3.1 Ambarzumian’s model of the Milky Way

In Ambarzumian’s model, the variable r stands for a dis-
tance and E(r) denotes the energy of a ray of light prop-
agating through the space. Assume that every elementary
volume radiates with constant rate so that E(r) increases
linearly (∝cr). Assume moreover that space is filled with
absorbing clouds that are distributed in a homogeneous
and isotropic manner. Let ρ = α/σ be the number of
clouds by unit volume; σ is an effective cross section and
α is the average number of clouds by unit length of a
straight line. When it gets through a cloud, a ray of light
keeps only part of its energy due to partial transparency

W ∈ [0, 1] of the cloud. Let us denote by F (ω) and F (W )
the respective probability densities of ω = ln W and W .
On one hand, E(r) increases over distance r because of
the homogeneous and isotropic radiation cr. On the other
hand, random fluctuations are superimposed to this lin-
ear increasing trend due to absorption by clouds. These
fluctuations are of main interest. Since clouds are uni-
formly distributed in space, the ray crosses k absorbing
clouds with k distributed by a Poisson law of parame-
ter αr: Pαr(k) = e−αr(αr)k/k!. Consequently, the ray of
light undergoes a series of k attenuations by a factor Wi,
1 ≤ i ≤ k, identically distributed by F . The total attenua-
tion is given by W = W1 · . . . ·Wk. Taking logarithms, one
gets the logarithmic attenuation ω = ω1 + . . .+ωk so that
ω = ln W is distributed by F ∗k for each value of k. Av-
eraging this result over all possible values of k yields the
distribution of logarithmic attenuation over a distance r:

Gr(ω) = e−αr
∞∑

k=0

(αr)k

k!
F ∗k. (43)

As a result, attenuation precisely exhibits a log compound
Poisson distribution (see (28)).

4.3.2 An analogy with the cascade of energy in turbulence

The parallel between such a cascade and the usual
Richardson cascade using the interpretation of (28) of Sec-
tion 3.2 is rather immediate. It suffices to compare the evo-
lution of a ray of light travelling through a distribution of
absorbing clouds to the evolution of turbulent dissipation
through the scales.

Let us imagine that at each time and each position,
we can see a turbulent flow as a collection of eddies of
different sizes r. Note that r is no longer a position pa-
rameter but a scale parameter. Assume that the number of
eddies at scales r2 < r < r1 follows a Poisson law with pa-
rameter ∆nr1,r2 = n(r2)− n(r1). The quantity ∆n(r1, r2)
can be interpreted as an average number of ‘dissipative
structures’ between scale r1 and scale r2. Note that the
terms ‘dissipative structures’ have to be taken as an im-
age without precise dynamical sense here. One may as well
consider the quantity −dn/d ln r as a density of ‘dissipa-
tive structures’ by (logarithmic) unit scale (i.e., parame-
ter α in Ambarzumian’s model). Let us denote by W the
energy transmission rate of each eddy and assume that
W is a random variable with probability density function
F that does not depend on the energy received by an
eddy nor on its size r. Assume moreover that the W of
eddies are independent and identically distributed. Then
the rate of energy transfer from a larger scale r1 to a
smaller scale r2 is described by a (log-)compound Pois-
son distribution (28). Furthermore, the distribution of the
(log-)dissipation rate at some smaller scale r2 can be de-
duced from the distribution of the (log-)dissipation rate
at a larger scale r1 thanks to a convolution with the prop-
agator G of a compound Poisson cascade as in (39). The
parameter ∆n represents the average number of steps of
the cascade: scale r2 is reached after a random number k of
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steps from scale r1. This random number follows a Poisson
law and may vary with time and space. Similarly, the ker-
nel G describes the elementary step which is determined
by the distribution F . Exponents ζ(q) are a representation
of the distribution F of the rate of transfer W of energy
from an eddy to another.

We emphasize that this approach is not restricted
to the abstract description of statistical features since
IDC provide us with a way to the synthesis of modelling
stochastic processes. Of course, we do not pretend that
these processes are exactly reproducing all the proper-
ties of a real turbulent flow. However infinitely divisible
cascades obey many interesting properties. They display
both true stationarity as well as true continuous scaling.
They are non Gaussian and scale invariant. They also have
many degrees of freedom which can be used to introduce
some geometry in the model. For instance, some controlled
anisotropy at large or at small scales or a control of the
small scale behaviour can be taken into account thanks to
the integration kernel f(x) — see Section 2.1. They can
be defined in several dimensions. We emphasize again that
the numerical synthesis is simple to implement. One could
even think about working in 4 dimensions to describe the
intermittent time evolution of some scalar field. Indeed,
the “frozen hypothesis” which is often used in turbulence
assumes that the measurement of the time evolution of
some quantity at one point in a turbulent flow is equiva-
lent to the measurement of this quantity along a stream-
line at fixed time (roughly v(x, t) = v(x − U t, 0)). Thus
one expects some similarity between time fluctuations and
spatial fluctuations. The synthesis of an IDC in 4 dimen-
sions can be interpreted as the synthesis of an evolving
multifractal scalar field (4D = 3D + t). Such stochastic
processes may even be considered to simulate small scales
in a purely stochastic manner in numerical simulations of
turbulent flows. This is an open question.

4.4 Revisiting some classical models of turbulence

Relying on this vision of the cascade of energy in turbu-
lence, we propose to visit again some traditional models
of turbulence within the framework of infinitely divisible
cascades.

4.4.1 Kolmogorov 1941

First of all, Kolmogorov’s 1941 model corresponds to a
perfect transfer of energy through the scales: dissipation
occurs at an infinitely small scale only (as Re → ∞).
This corresponds to the case F = δ0 (i.e. constant mul-
tipliers W = 1) in the log Poisson model. Such a cas-
cade is perfectly deterministic and exhibits no random-
ness: there is no cascade actually. This is somehow iron-
ical since Richardson’s cascade precisely inspired Kol-
mogorov’s theory.

4.4.2 Log-Poisson (She-Lévêque) model

As a more flexible model still preserving scale invariance,
then comes the log Poisson model. It corresponds to a
situation where every dissipative structure transfer a con-
stant fraction β of energy. Then each step of the cascade is
deterministic since W = const. = β and only the number
of steps is random. The non-linearity scaling exponents
appear as a consequence of a uniform distribution of dis-
sipative effects at all scales.

It was shown in [20,46] that the log Poisson model
corresponds to the She-Lévêque model [45] in which the
special β value is associated to singular structures in the
flow. A comparison between an experimental velocity sig-
nal from a turbulent flow and a synthetic signal built from
an IDC of the Poisson type was presented in [16]. Both sig-
nal are quite similar. She and Waymire [46] even wondered
whether it was possible to propose a classification of non
linear dissipative systems on this basis. Each universality
class would be defined by the number of singularities (each
associated to a δln βi in F ) necessary to describe it by a
log compound Poisson model with F =

∑
i δln βi . A clas-

sification would be obtained by simply ‘counting the βi’.
At least two reasons explain that this idea did not per-
sist. First, it assumes the existence of a finite number of
singularities which is very restrictive in such a disordered
system as a turbulent flow. Second, it is extremely difficult
to support such a theoretical argument with experimental
observations that do not provide sufficient accuracy to dis-
criminate between different cases. Up to our knowledge,
only very few assumptions can be imposed to the set of
potentially relevant probability density functions F .

4.4.3 Compound Poisson cascades

The next natural generalization considers that the eddies
are only statistically identical, i.e., their transmission ra-
tios are no longer identical but are independently and
identically distributed random variables. Such a frame-
work is provided by log compound Poisson models (see
Sect. 3) for which F �= δln β. In this case, the existence of
a wide variety of dissipative structures with random dissi-
pation rates is assumed. A new ingredient is provided by
the possible fluctuation of the factor β within a contin-
uum of values. The log Poisson model is recovered in this
framework as the most simple case when F concentrates
onto only one point (F = δln β).

Beyond the work by She and Waymire [46], several
authors have proposed log compound Poisson models. For
instance, Castaing [9] used thermodynamical arguments
to introduce a temperature of turbulence T that would
reflect the efficiency of dissipative eddies. In fact, Cas-
taing proposed a particular log compound Poisson model
with F (ω) = eω/T /T ⇔ F (W ) = 1/T W 1/T−1. Then,
both the number k of structures crossed between scales
r1 and r2 and the rate of transfer distributed by F are
random. In this work, Castaing proposed scaling expo-
nents for velocity increments in turbulent flows of the
form ζ(q) = q(1 + 3T )/3(1 + qT ). It is interesting to
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note that Yakhot [50] independently obtained exactly the
same scaling exponents by studying the symmetries of
Navier-Stokes equations (Yakhot introduced a parameter
B ≡ 1/T ): here is an evidence for potential links between
multiplicative cascades and Navier-Stokes equation.

A marginal but interesting remark is that an infinitely
divisible cascade has a priori no inverse, in agreement with
the existence of a one-way direct (no inverse) cascade only
as expected in turbulence. However, we remark that there
is no objection to multipliers W taking values outside the
interval [0, 1] thus permitting the existence of a local in-
verse cascade: W > 1 means that a small scale provides
energy to a larger one. Infinitely divisible cascades may
account for local inverse transfer of energy even though
the cascade remains one-way on the average.

4.4.4 Kolmogorov 1962

Kolmogorov 1962 theory would correspond to a log-
Normal cascade (G would be a Gaussian) that is a partic-
ular case of an IDC which is not a CPC since the Normal
distribution is not compound Poisson [21]. As a conse-
quence, while Kolmogorov 1962 theory inspired most of
the work on multiplicative cascades, it is very difficult to
synthesize log-Normal cascades numerically in d dimen-
sions (the algorithm given in 3.4 is not suitable). This is
due to the fact that a log-Normal cascade cannot be de-
composed into the combination of a point process (xi, ri)
on one hand and random multipliers on the other hand.
Only the most general form of (7) using an independent
random additive measure must be used. Thus, it is some-
what disappointing to remark that Kolmogorov 1962 the-
ory is nice for theoretical and analytical computations but
appears a very difficult to synthesize numerically in d di-
mensions, except for d = 1.

5 Conclusion

In this article, we have presented the generalization of the
1D infinitely divisible cascades [4,7,34,17,18,44] to d di-
mensions and described their main properties. The main
statistical properties can be generalized in a quite natural
manner. IDC provide us with a large class of non Gaus-
sian scale invariant processes with controlled multifractal
properties. The numerical synthesis of compound Poisson
cascades (CPCs) is easy to implement. This is only one
of the numerous nice features of CPCs. CPCs can as well
help to better understand the notion of ’cascade of energy’
in turbulence. To this aim, we referred to Ambarzumian’s
model to propose an analogy between the evolution of the
energy of a ray of light through a distribution of absorb-
ing clouds and the transfer of energy from large to small
scales through a cascade of dissipative structures in a tur-
bulent flow. This led us to propose a phenomenology that
takes into account the main properties of turbulent flows
altogether: scale invariance, statistical intermittency (i.e.,
departures from Gaussian distributions), the existence of
coherent structures and an underlying multiplicative cas-
cade. We emphasize that, in contrast with the way one

usually imagine Richardson cascade, there is no discrete
aspect left when one considers IDC in their most general
form (7) and (8). This is somehow more difficult to imag-
ine but maybe in better agreement with physical intuition.

Note that IDC in d dimensions may also be useful to
synthesize a wide variety of multifractal scalar fields: tex-
tures in 2D, dynamical textures (3D = 2D + t), turbu-
lent dissipation field in 3D, dynamical 3D scalar fields
(4D = 3D + t, e.g., moving 3D cloud)... One may also
explore the use of the integration kernel f(x) to add some
specific geometrical features in the model. Like in the
1D case [17], a non scale invariant version can be built.
Software and demos are available from our webpage at
http://www.isima.fr/ chainais/SOFTWARE/.

Several applications are yet the subject of ongoing
work. IDC appear as a good model for the statistics of
natural images [14]. A detailed study will be presented
in a forthcoming paper [12]. The use of IDC to model
images of the solar corona is under study in collabora-
tion with the Royal Observatory of Belgium within the
project CoSMIC (Corona of the Sun: modelling Images
with Cascades). Despite much progress, the present work
is still limited to scalar fields only. An important perspec-
tive is thus the quest for a vectorial model that would be
able to reproduce the essential properties of a turbulent
velocity field.

Parts of the results presented in this paper were com-
municated to GRETSI’05 on September 7, 2005 [15] and
to ICIP’05 on September 14, 2005 [14].

The author gratefully acknowledges P. Abry, A. Arneodo, J.
Barral, B. Castaing, L. Chevillard, V. Delouille, Y. Gagne,
B. Lashermes, N. Mordant, and R. Riedi for stimulating and
fruitful discussions.

Appendix A: Power law scaling and control
measure

This section aims at showing that the power law scaling
behaviour of Q�(x) is linked to the choice of the control

measure dm(x, r) =
dr

V1/2rd+1
dx where V1/2 is the vol-

ume of the sphere of radius 1/2 in d dimensions (e.g., π/4
in 2D). Note that we only focus on the basic definition
of IDCs using the indicating function of a disk I1D(x) as
the geometrical kernel f(x). Indeed, only the normalizing
factor V1/2 will change if another choice is made.

Since the moments of Q� are given by (12), the purpose
here is to find (for fixed dimension d) the function g(r)
such that dm(x, r) = g(r)dxdr and m(C�) = − log �. We
are looking for g(r) such that:

m(C�(0)) =
∫ 1

�

dr g(r)
∫
D(0,r/2)

ddx

=
∫ 1

�

dr g(r) V1/2 rd

= − log �. (44)
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This condition imposes the choice

g(r) =
1

V1/2 rd+1
. (45)

Appendix B: Autocovariance of log Q�(x)

This section is devoted to the computation of the
covariance cov(log Q�(0), log Q�(x)). Thus we need
to compute IE[log Q�(0) log Q�(x)] or equivalently
IE[M(C�(0))M(C�(x))].

To this aim we use the following decomposition (see
Fig. 1b):

J (0,x) = C�(0) ∩ C�(x),
C�(0) = L(0,x) ∪ J (0,x),
C�(x) = J (0,x) ∪R(0,x). (46)

Moreover let

L(0,x) = M(L(0,x)),
J(0,x) = M(J (0,x)),
R(0,x) = M(R(0,x)). (47)

Remark that L(0,x), J(0,x) and R(0,x) are independent
random variables since L(0,x), J (0,x) and R(0,x) are
disjoint domains. Moreover, L(0,x) and R(0,x) are iden-
tically distributed since m(L(0,x)) = m(R(0,x)). Thus
we get:

IE[M(C�(0))M(C�(x))] = IE[L(0,x)]2

+ 2IE[L(0, x)]IE[J(0,x)] + IE[J(0,x)2]. (48)

For simple cones (circular, square...), one can show that
for |x| � 1:

m(J (0,x)) = − log |x| + K + o(|x|), (49)

where K is some numerical constant depending on the
chosen shape of the cone. Denoting by C1 = ϕ′(0), re-
spectively C2 = ϕ′′(0), which are the first and second
cumulant of the distribution of log Q�, this yields:

IE[J(0, x)] = C1 [− log |x| + K + o(|x|)] . (50)

From

m(L(0,x)) = m(C�) − m(J (0, x))
= − log � + log |x| − K + o(|x|), (51)

we get:

IE[L(0,x)] = C1 [− log � + log |x| − K + o(|x|)] . (52)

Combining (50) and (52) yields:

IE[L(0,x)]2 + 2IE[L(0,x)]IE[J(0,x)] = −C2
1

[
(log |x|)2

−2K log |x| + K2 − (log �)2 + o(|x| log |x|)] . (53)

Furthermore, since M is an independently scattered addi-
tive infinitely divisible random measure we have:

IE[J(0,x)2] = var(J(0,x)) + IE[J(0,x)]2 (54)
= −C2 log |x| + S + o(|x|) + C2

1

[
(log |x|)2

−2K log |x| + K2 + o(|x| log |x|)] .

As a consequence, we obtain:

IE[M(C�(0))M(C�(x))] = −C2 log |x|+S+o(|x|)+C2
1 (log �)2.

(55)
Since IE log Q� = IEM(C�) = −C1 log �, we finally get:

cov (log Q�(0), log Q�(x)) = −C2 log |x|+ S + o(|x|) (56)

where we recall that C2 = −ϕ′′(0). See Figure 5b for an
illustration.
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